Reteaching 9-7

Factoring Special Cases

OBJECTIVE: Factoring the difference of two squares

MATERIALS: None

- The difference of two squares is written $a^2 b^2$. Note that both terms must be perfect squares.
- The factors of the difference of two squares, $a^2 b^2$ are (a + b) and (a - b). Once you have determined that the binomial you want to factor is the difference of two squares, you can factor by using the formula $a^2 - b^2 = (a + b)(a - b)$.

Examples

Factor
$$a^2 - 16$$
.

$$a^2 - 16$$

$$a^2 - 4^2$$

$$a^2 - b^2 = (a + b)(a - b)$$

$$a^2 - 4^2 = (a + 4)(a - 4)$$

$$(a + 4)(a - 4)$$

$$\leftarrow$$
 Rewrite 16 as 4^2 .

Factor
$$3a^2 - 75$$
.

$$3\dot{a}^2 - 75$$

$$3(a^2 - 25)$$

$$3(a^2-5^2)$$

$$a^2 - b^2 = (a + b)(a - b)$$

$$3(a^2 - 5^2) = 3(a + 5)(a - 5)$$

$$3(a + 5)(a - 5)$$

- Both terms are *not* perfect squares.
- Both $3a^2$ and 75 are divisible by 3. Factor out 3.
- 25 is a perfect square. Rewrite 25 as 5^2 .
- Write the formula.
- Replace b with 5.
- Solution

Exercises

Factor each expression.

1.
$$a^2 - 36$$

4.
$$4x^2 - 25$$

7.
$$3x^2 - 12$$

10.
$$x^2 - 225$$
13. $6x^2 - 54$

2.
$$x^2 - 64$$

5.
$$9y^2 - 16$$

8.
$$2x^2 - 18$$

11.
$$x^2 - 144$$
14. $7x^2 - 112$

3.
$$v^2 - 49$$

6.
$$25x^2 - 64$$

9.
$$4x^2 - 16$$

12.
$$16x^2 - 49$$

15.
$$5x^2 - 125$$