9.4 Multiplying Special Cases

The Square of a Binomial:

The expressions $(a+b)^2$ and $(a-b)^2$ are squares of binomials. To square a binomial, you can use FOIL or use the following rule:

$$(a+b)^{2} = \frac{\alpha^{2} + 2ab + b^{2}}{(a-b)^{2}} = \frac{\alpha^{2} - 2ab + b^{2}}{(a-b)^{2}}$$

**Note-> The so	juare of a binon	nial is the	Square
of the Arst	term plus	twice	the
product	of the _	two	
terms plus the _	Square		of the
last	term.		

Examples: 1. $(x + 7)^2$ b = 7 $x^2 + 2(x \cdot 7) + 7$ $x^2 + 14x + 149$ 3. $(t + 6)^2$ a = t b = 4 $t^2 + 2(t \cdot 6) + 6^2$ $t^2 + 12t + 36$

2.
$$(4k-3)^2$$
 $(4K)^2 - 2(4K)(3) + 3^2$ $(4K)^2 - 24K + 9$ 4. $(5y+1)^2$ $(5y)^2 + 2(5y\cdot 1) + 1^2$ $(5y)^2 + 10y + 1$

5.
$$(7m - 2p)^2$$
 $\begin{pmatrix} a = 7m \\ b = 2p \end{pmatrix}$ $(7m)^2 - 2(7m \cdot 2p) + (2p)^2$ $\begin{pmatrix} 49m^2 - 28mp + 4p^2 \end{pmatrix}$

6.
$$(9c-8)^2$$
 $\begin{pmatrix} a=9c \\ b=8 \end{pmatrix}$ $(9c)^2 - 2(9c.8) + 8^2$ $8|c^2 - 144c + 64|$

The Difference of Squares:

$$(a+b)(a-b) = 0^2 - b^2$$

The product of the sum and difference of the same two terms is the <u>differences</u> of their <u>Squares</u>.

Examples:

1.
$$(a + 8)(a - 8)$$

 $a^2 - 8^2$
 $a^2 - 64$

3.
$$(d+11)(d-11)$$

$$\frac{d^2-||^2}{||^2-||^2|}$$

5.
$$(9j + 2)(9j - 2)$$

 $(9j)^2 - 2^2$
 $(8j)^2 - 4$

2.
$$(x + 4)(x - 4)$$

 $x^2 + 4^2$
 $x^2 - 16$

4.
$$(c^2 + 7)(c^2 - 7)$$

$$(c^2)^2 - 7^2$$

$$(c^4 - 49)$$

6.
$$(9v^3 + w^4)(9v^3 - w^4)$$

 $(9v^3)^2 - (w^4)^2$
 $8v^6 - w^8$