Name:	_KEY	
_		

Topic: 8.3: The number e Date:

Summary:

Use a calculator to complete the table (round to the 3 decimal places)

n	10	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶
$\left(1+\frac{1}{n}\right)^n$	2.594	2.705	2.717	2.718	2.718	2.718

As n gets larger, $\left(1+\frac{1}{n}\right)^n$ gets closer to _____2.7182818459

This is the value of e

e is also known as <u>natural base e; Euler number</u>.

We can never forget the exponent properties!

These exponent rules are still applied when the base is e

Simplify the expression.

1.
$$e^3 \cdot e^4$$
 e^{3+4}

2.
$$\frac{10e^3}{5e^2}$$
 2e³⁻²

3.
$$(3e^{-4x})^2$$
 $3e^{-4x(2)}$
 $9e^{-8x}$

$$4.\frac{24e^{8}}{8e^{5}} \underbrace{3e^{8-5}}_{3e^{3}}$$

$$e^{8x}$$
5. $(2e^{-5x})^{-2}$

6.
$$e^{-2} \cdot e^{8}$$
 $e^{-2} \cdot e^{8} = e^{-2}$

$$\frac{(2e^{-5x})^2}{2^2e^{-5x(2)}} = \frac{1}{4e^{-10x}}$$

$$\approx \frac{e^{10x}}{4}$$

7.
$$(2e^5)^3$$

8.
$$\frac{e^{-3}}{e^2}$$

9.
$$-3e \cdot (4e)^{-2}$$

$$\frac{-3e}{(4e)^2} = \frac{-3e}{4^2e^2} =$$

11.
$$e^{2x} \cdot e^{1-2x}$$

13.
$$e^2(2e^4)^3$$

$$e^{2}2^{3}e^{4(3)}$$
 $e^{2}8e^{12}$

10.
$$2e^x \cdot e^{(x+3)}$$

$$\frac{2e^{x+(x+3)}}{2e^{2x+3}}$$

$$12. \ \frac{e}{e^{(x+1)}}$$

$$e^{1-(X+1)}$$

$$e^{-x}$$

$$14. \left(\frac{e^2}{2}\right)^{-3}$$

