Topic: 7.2 Properties of Rational Exponents- Day 3

Summary:

All of the rules we've used this week also apply when there are variables.

Examples:

1. $\sqrt[3]{27z^9}$

$$3z^3$$

*Divide 3.
$$\sqrt[5]{x^5}$$
 inside exponent

ey index

DAII

out -

put

Under

radial.

remained s
$$5. 8\sqrt{x} - 3\sqrt{x}$$

$$5\sqrt{x}$$

2.
$$(16g^4h^2)^{1/2} = \sqrt{\frac{16g^4h^2}{99}}$$

$$2\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{2}\sqrt{99}$$

$$44 \sqrt{99}$$

$$49^2h$$

4.
$$\sqrt[4]{12d^4e^9f^{14}}$$
 = 4^3 $\sqrt[3]{2ef^2}$ $\sqrt[3]{12ef^2}$

$$6. \ 2\sqrt[4]{6x^5} + x\sqrt[4]{6x}$$

$$2 \times \sqrt[4]{6x} + \times \sqrt[4]{6x}$$

$$3 \times \sqrt[4]{6x}$$

8. (625j8k4)^{1/4}

7625j8K4

25 25 Williami

(6) \$ 5 5

2rst 3/s2t

Let's examine the similarity between radicals and fractional exponents. In your calculator, find the value of the following...

$\sqrt{4} = \pm 2$	$(4)^{1/2} = \frac{1}{2}$
³ √27 = 3	$(27)^{1/3} = 3$
$\sqrt[4]{16} = \frac{1}{2}$	$(16)^{1/4} = \frac{1}{2}$
$\sqrt[5]{1,024} = 4$	$(1,024)^{1/5} = 4$

What is the pattern that you recognize?

$$\sqrt[y]{x} = \sqrt{\frac{9}{9}}$$

Examples:

Write each expression in radical form.

9.
$$7^{\frac{1}{2}}$$

10.
$$4^{\frac{4}{3}}$$

11.
$$2^{\frac{5}{3}}$$
 $(5/2)^3$

12.
$$7^{\frac{4}{3}}$$

13.
$$(5x)^{\frac{5}{4}}$$

14. $(5x)^{\frac{1}{2}}$

15. $(5x)^{\frac{5}{4}}$

16. $(5x)^{\frac{1}{2}}$

17. $(5x)^{\frac{1}{2}}$

18. $(5x)^{\frac{1}{2}}$

19. $(5x)^{\frac{1}{2}}$

Write each expression in exponential form. Then Simplify.

15.
$$(\sqrt{10})^3$$

16.
$$\sqrt[6]{2}$$

17.
$$(\sqrt[4]{2})^5$$
 $2^{\frac{5}{4}}$

18.
$$(\sqrt[4]{5})^5$$

19.
$$(\sqrt[4]{m})^3$$

20.
$$(\sqrt[3]{6x})^4$$
 $(\sqrt[3]{6x})^4$