Name: KEY Topic: 7.1 nth Roots and Rational Exponents Summary: Rewriting radical form in exponent notation and exponent notation in radical form: $$\text{ `out} \sqrt[n]{a^{in}} \text{ is the same as } \left(\sqrt[n]{a}\right)^m \to a^{\frac{m}{n}} \to a^{\frac{in}{out}} \to \text{ `out} \sqrt[n]{m^{in}}$$ Examples: 2. $$\sqrt[6]{3^2}$$ $3^{\frac{2}{6}} = 3^{\frac{1}{3}}$ 3. $$\sqrt[3]{x^7}$$ 5. $$10^{\frac{3}{4}}$$ 7. $$2x^4 = 162$$ $x = 162$ $x = 163$ $x = 163$ 8. $$z^{10}$$ 9. $$\sqrt[2]{z^5}$$ Finding nth roots INDEX (n) Number needed to "circle/cancel" Make a factor tree EXPONENT (m) How many of the same factor tree Examples: Find the nth root $\sqrt[n]{a}$ for the given values of n and a n=how many factors needed to Circle/contel. 8 4 22 18. $$(1)^{\frac{1}{6}}$$ $$\sqrt[3]{216} = 2.3 = 161$$ $2^{108} \times 1000$ 10000$ 19. $$(4)^{\frac{3}{5}}$$ *Same as #15 $5/4^3 = 5/64 = 2$ 2 5/2 If the index is odd \rightarrow the nth root will have the same sign as the base If the index is even \rightarrow the nth root will be \pm (if the base number is negative I will be used) 22. $$(-8)^{\frac{1}{3}}$$ 3 - 8 *Keep Sign of base (-8) 23. $$(-64)^{\frac{1}{3}}$$ 3/-64 = -2.2=(-4) *Keep sign of base ? (-64) (-64) 25. $$(-8)^{\frac{5}{3}}$$ $$3(-8)^{\frac{5}{3}} = 2^{\frac{5}{3}} 2^{$$ Solving equations using nth roots 27. $$x^2 + 5 = 139$$ $$28.3(x-7)^{3} = 729$$ $$\begin{array}{c} 729 \\ 3 \\ 4 \\ 3 \\ 4 \end{array}$$ 31. $$(x+4)^2 = 0$$ 32. $$\sqrt{5}x^2 = -30$$ 33. $$(x-1)^5 = 243$$