Name: KEY

Topic: 7.1 nth Roots and Rational Exponents

Summary:

Rewriting radical form in exponent notation and exponent notation in radical form:

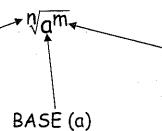
$$\text{ `out} \sqrt[n]{a^{in}} \text{ is the same as } \left(\sqrt[n]{a}\right)^m \to a^{\frac{m}{n}} \to a^{\frac{in}{out}} \to \text{ `out} \sqrt[n]{m^{in}}$$

Examples:

2.
$$\sqrt[6]{3^2}$$
 $3^{\frac{2}{6}} = 3^{\frac{1}{3}}$

3.
$$\sqrt[3]{x^7}$$

5.
$$10^{\frac{3}{4}}$$


7.
$$2x^4 = 162$$
 $x = 162$
 $x = 163$
 $x = 163$

8.
$$z^{10}$$

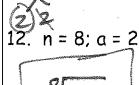
9.
$$\sqrt[2]{z^5}$$

Finding nth roots

INDEX (n)
Number needed to
"circle/cancel"

Make a factor tree

EXPONENT (m)


How many of the

same factor tree

Examples: Find the nth root $\sqrt[n]{a}$ for the given values of n and a

n=how many factors needed to

Circle/contel. 8 4 22

18.
$$(1)^{\frac{1}{6}}$$

$$\sqrt[3]{216} = 2.3 = 161$$
 $2^{108} \times 1000$
 $2^{108} \times 10000$

19.
$$(4)^{\frac{3}{5}}$$
 *Same as #15 $5/4^3 = 5/64 = 2$ 2 5/2

If the index is odd \rightarrow the nth root will have the same sign as the base

If the index is even \rightarrow the nth root will be \pm (if the base number is negative I will be used)

22.
$$(-8)^{\frac{1}{3}}$$

3 - 8

*Keep Sign of base (-8)

23.
$$(-64)^{\frac{1}{3}}$$

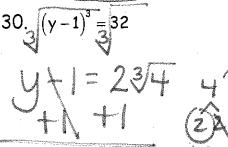
3/-64 = -2.2=(-4)

*Keep sign of base ?

(-64)

(-64)

25.
$$(-8)^{\frac{5}{3}}$$


$$3(-8)^{\frac{5}{3}} = 2^{\frac{5}{3}} = 2^{$$

Solving equations using nth roots

27.
$$x^2 + 5 = 139$$

$$28.3(x-7)^{3} = 729$$

$$\begin{array}{c}
729 \\
3 \\
4 \\
3 \\
4
\end{array}$$

31.
$$(x+4)^2 = 0$$

32.
$$\sqrt{5}x^2 = -30$$

33.
$$(x-1)^5 = 243$$