Topic:

Writing Eq's of Perpendicular Lines Date:

Summary:

 $M = \frac{Y_2 - Y_1}{X_2 - X_1}$

SLOPE-INTERCEPT Form

y=mx+b

y-y=m(x-x,)

How do we know if two lines are perpendicular?

Their Slopes (m) are opposite (+-)

Determine if the two lines are perpendicular.

1) Line 1: through (10)

1) Line 1: through (-1, 0) and (0, 4)

Line 2: through (-2, -6) and (-1, -2) No, not perpendicular.

m, = 4-0, = 4=4

 $M_2 = \frac{-2 - (-6)}{-1 - (-2)} = \frac{4}{1} - (4)$

They are parallel. (Same Slopes)

2) Line 1: y = 3x - 9

Line 2: $y = -\frac{1}{2}x + 7$

y=mxtb, yes, 1

< Slopes are opposite reciprocals.

Yes_

3) Line 1: $y = -\frac{1}{2}x$

Line 2: y = 2x + 5

 $-\frac{1}{2}$ YM₂= 2

yes, the lines are perpendicular.

hange to 4 Line 1: 3x + 2y = 6Slope-Int.

Horm. 4= MX+b

Line 2: 12x - 18y = -1

Line 1: 24= -3x+6

y= -3x+3

M=-3

5) Line 1: -0.5x - y = 1

Line 2: -4x + 2y = -2

Line1: - 4= 0.5x+1

EX: Write an equation of a line that passes through (2, -3) and is perpendicular to the line y = 2x - 3.

Steps:

) Identify

DR Calculate

j=mx+b;

n=12-1

Slope (m)

of original

m=?

*opposite

reciprocal

3) Use M_

and point

of I line

and plug

into Point -

Slope Form.

D.Simplify

andwrite

n Slope-

Form.

Intercept

4=mxtb.

line.

perpendicular to the line
$$y = 2x - 3$$
.
① $M = 2$
② $y - y_1 = M(x - x_1)$
② $y + 3 = -\frac{1}{2}(x - 2)$
 $y + 3 = -\frac{1}{2}x + 1$

TRY: Write an equation of a line that passes through (4, -1) and is

perpendicular to the line
$$y = -x + 4$$
.
① $m = -1$ ③ $y - y_1 = m(x - x_1)$ ④ $y = x - 5$
② $m_1 = 1$ $y + 1 = 1(x - 4)$
 $y + 1 = x - 4$

2) Identify rependicularex: Write an equation of a line that passes through (3, -2) and is perpendicular to the line that passes through (3,0) and (-3,1). Slope. M.

$$\begin{array}{ll}
0 m = \frac{Y_2 - Y_1}{X_2 - X_1} & 3 y - y_1 = m(x - X_1) & 4 y = 6x - 20 \\
m = \frac{1 - 0}{-3 - 3} = \frac{1}{-6} & y + z = 6x - 18
\end{array}$$

2m, =6

TRY: Write an equation of a line that passes through (-1, 3) and is perpendicular to the line that passes through (1, 5) and (4, 2).

Into Point-
Slope Form.
$$D_{m} = \frac{Y_2 - Y_1}{X_2 - X_1}$$
 $y - 3 = 1(x + 1)$
 $y - 3 = 1(x + 1)$
 $y - 3 = x + 1$
 $y - 3 = x + 1$