Name:	KEY	
Date:		

5.1: Graphing Quadratic Functions

Summary:

Quadratic > X2

Quadratic Function: $y = ax^2 + bx + c$

Key Information:

- Shape: <u>Parabola</u> 7
 - Vertex: <u>Maximum or Minimum</u>
- Axis of Symmetry: Invisible "fold" line- Cuts in half
- Opens up if a > 0 a=+; Opens down if a < 0 a=

$$y = x^2$$

 $y = x^2$ Parent

$$v = -x^2$$
 $Q = -1$

Opens up

Functions

opens down

X	IJ:	:xŁ		(x	ıУ)	
- 2	(-2)*=4			, 4)	
-	(-1)		(
0	(o) (ı)	2:0		0,	(0)		
Mag				1)		
2	(2)	2:4	CONTROL OF	2.	U)		

$$\begin{array}{c|cccc} x & y = -x^2 & (x,y) \\ \hline -2 & -(-2)^2 = -4 & (-2,-4) \\ -1 & -(-1)^2 = -1 & (-1,-1) \\ 0 & -(0)^2 = 0 & (0,0) \\ 1 & -(1)^2 = -1 & (1,-1) \\ 2 & -(2)^2 = -4 & (2,-4) \end{array}$$

Max. Vertex

Min. Vertex

Standard Form

$$y = ax^2 + bx + c$$

*C=, Y-Intercept

Vertex Form

$$y = a(x - h)^2 + k$$

Characteristics of the graph of a quadratic function:

		Standard Form	Vertex Form	
Calculate <	Vertex (x, y)	$(x=\frac{1}{2a}, y)$	(h,K)	
To findy,	Axis of Symmetry (Invisible Line)	X= -b 2a	X=h (opposite of how it appear	st) S)
		(x.u)		

- Keep in mind, the vertex is a point. You need to have an
 X-Coordinate and a y-Coordinate.
- The axis of symmetry is a <u>Vertical</u> line. This needs to be in the form $\underline{X} = \underline{\hspace{1cm}}$.

What is the vertex and axis of symmetry for the following functions?

functions?
a.
$$y = -x^2 + x + 12$$
 Standard
a=-1 b=1 C=12

$$X = \frac{-b}{2a} = \frac{-1}{2(-1)} = \frac{1}{2}$$

Use the

X-Coordinate,

back into the

equation.

and plug it

original

Axis of Symmetry: X= =

c.
$$y = 2x^2 - 8x + 6$$
 Standard
a=2 b=-8 c=6 Form

$$X = \frac{-b}{2a} = \frac{-(-8)}{2(2)} = \frac{8}{4} = 2$$

$$y=2(2)^2-8(2)+6=-2$$

b.
$$y = 2(x - 1)^2 + 3$$
 Vertex

Axis of Symmetry:

d.
$$y = -\frac{1}{2}(x+3)^2 + 4$$
 Vertex Form

*Standard

apens wo

Vertex:
$$x = \frac{-b}{2a} = \frac{-(-8)}{2(2)} = 2$$

$$y=2(2)^2-8(2)+6=-2$$

[Vertex=(2,-2)]

$$Vextex = (2, -2)$$

Finish Graph: (Slope) a=2

$$\begin{array}{c|c} |a| & |(2)=2=\frac{2}{7} \\ \hline 3a & 3(2)=6=\frac{6}{7} \end{array}$$

CELO y-Intercept: (0,6)

opens up

$$y = (2)(x-1)^2 + 3$$
 * Vertex

Form

Vertex: (h,K)

Vertex: (1,3)

Axis of Symmetry: X=1/

Finish Graph: (Slope)

$$\begin{array}{c|c} & a=2 \\ & la & (1)(2)=2=\frac{2}{7} \\ & 3a & 3(2)=6=\frac{6}{7} \end{array}$$

$$y = -x^2 + 2x + 8$$

 $y = -x^2 + 2x + 8$ *Standard Form

opens down Vertex:

$$X = \frac{-b}{2a} = \frac{-2}{2(-1)} = 1$$

$$y = -(1)^2 + 2(1) + 8 = 9$$

Finish Graph: (Slope)

$$\begin{vmatrix} a = -1 \\ 1a & 1(-1) = -1 \\ 3a & 3(-1) = -3 \\ 5a & 5(-1) = -5 \end{vmatrix}$$

$$y = -(x+5)^2 + 2$$

opens down

Vertex: (h,K)

Finish Graph: (Slope)

